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Relativity for a Layman 

   Put your hand on a hot stove for a 

minute, and it seems like an hour.  

   Sit with a pretty girl for an hour, and it 

seems like a minute.  That's relativity! 

            

       A. Einstein 

        



Space-time Manifold 

• A manifold is a topological space that 
resembles Euclidean space near each point.  

• Although a manifold resembles Euclidean space 
near each point, globally it may not.  

• Spacetime manifold in the solar system is not 
like Euclidean space.  

• Conclusions 

– Do not impose the Newtonian concepts in testing GR 

– Be as much close to the Newtonian concepts as 
possible but not closer 
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http://en.wikipedia.org/wiki/Topological_space
http://en.wikipedia.org/wiki/Euclidean_space
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From Galileo to Einstein: Gravitation is not a Scalar Field! 
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Building Blocks of Relativity 
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Einstein’s Field Equations and Gauge Freedom 
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Solving Einstein’s Equations  
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Solar system (including Earth-Moon system, space geodesy, satellite navigation) is a  
unique laboratory for testing GR as we have direct access and can measure  all geometric  
and relativistic parameters from a set of independent observations and space missions. 

LAGEOS, LARES LLR LLR, GNSS, VLBI 
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The Residual Gauge Freedom and Coordinates 

The gauge conditions simplify Einstein's equations 

but the residual gauge freedom remains. It allows us

to perform the post-Newtonian coordinate transformations:
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Specific choice of coordinates is determined by the boundary

conditions imposed on the metric tensor components.

w O       

We - Einstein’s followers - distinguish between the global and local coordinates 
in the sense of applicability of the Einstein principle of equivalence. 



11 

Why to introduce the local coordinates ? 
  • Earth-satellite/Moon system is a binary system residing on a 

curved space-time manifold  of the solar system 

• Motion of satellites are described in the most elegant way by 
the equation of deviation of geodesics in the presence of the 
(more strong) gravitational attraction of Earth. 

• N-body equations of motion have enormous gauge freedom 
leading to the appearance of spurious, gauge-dependent 
forces having no direct physical meaning 

• Introduction of the local coordinates is  

– to remove all gauge modes, 

– to construct and to match reference frames in the Earth-
satellite/Moon system down to a millimeter precision, 

– to ensure that the observed geophysical, geodetic and 
orbital parameters are physically meaningful and make 
sense. 
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Global and Local Coordinates (IAU 2000 Resolutions) 
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𝑡, 𝑥  - barycentric coordinates 

𝑢, 𝑤 - geocentric coordinates 

𝑇, 𝑋 - observer’ coordinates 

Nonlinear coordinate transformations 



The gauge freedom in SLR/LLR 
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Here 𝜈𝐵 and 𝜆𝐵 are constant coordinate parameters which choice defines the class  
of a barycentric coordinate system used in SLR/LLR data processing software 
 
𝜈𝐵 = 𝜆𝐵 = 0                         harmonic coordinates 
 
𝜈𝐵 = 0 ;   𝜆𝐵 = 1 + 𝛾          Painlevé coordinates 
 

𝑐4 𝜈𝐵 
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EIH equations of motion in the barycentric coordinates 
Kopeikin, PRL, 98, Issue 22, id. 229001 (2007);   Kopeikin & Yi, CMDA,  108, 245-263 (2010) 
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Gravito-electric force Gravito-magnetic (orbital motion-induced) force 
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The gauge-fixing parameters      and      enters both the N-body 
equations of motion and the equations of light propagation. All 
together it makes the procedure of fitting the measured 
parameters to SLR/LLR data  gauge-invariant. 

B B

2 2 1 1

2

2 1

( ) ( )B B B B

B B

B
B

B

GM t t

c R R


  
  

 


R Rv v

October 28, 2014 
19th International Workshop                       

on Laser Ranging  (Annapolis, MD) 

𝒕𝟐 - time of photon’s reception at point  𝒙𝟐 
 

𝒕𝟏 - time of photon’s emission at point  𝒙𝟏 

(1 + γ) 
 

𝑐4 



LLR test of General Relativity is far from being completed as the 
currently employed data processing algorithm does not 
distinguish between the spurious coordinate-dependent forces 
and the true (curvature related) gravitational forces. 

 

To separate the spurious forces, being dependent on the choice of 
coordinates, the relativistic theory of local frames must be 
employed (see the textbook by Kopeikin, Efroimsky, Kaplan 
“Relativistic Celestial Mechanics of the Solar System” Wiley, 2011) 

 

There are other problems with the interpretation of the 
measurement of SEP and/or Gdot as we need a much more 
consistent  theory of these violations (see “Frontiers in Relativistic 
Celestial Mechanics” ed. S. Kopeikin,  De Gruyter, 2014) 
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Toward a better SLR/LLR relativistic model 



Radial (synodic) relativistic effects in the orbital motion of satellite/Moon 
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~ 0.1 / 1 mm 



Relativistic Geoid 
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Definition 1:   The relativistic a-geoid represents a two-
dimensional surface at any point of which the direction of plumb 
line measured by a static observer is orthogonal to the tangent 
plane of the geoid's surface. 
 
Definition 2:   The relativistic p-geoid represents a two-
dimensional level surface of a constant pressure of the rigidly 
rotating perfect fluid. 
 
Definition 3:   The relativistic u-geoid represents a two-
dimensional surface at any point of which the rate of the proper 
time, 𝜏, of an ideal clock carried out by static observers with fixed 
geodetic coordinates 𝑟, 𝜃, 𝜙, is constant.  

Kopeikin S., Manuscripta Geodaetica, vol. 16, 301 - 312 (1991)        (theory in progress) 



October 28, 2014 
19th International Workshop                       

on Laser Ranging  (Annapolis, MD) 
19 


